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Abstract
There is widespread acknowledgement that computational thinking needs to be integrated 
in the school curriculum. Mathematical thinking (MT) and computational thinking (CT) 
are mutually supportive and yet distinct. Mathematics as a fundamental school subject 
therefore becomes the likely choice for integrating CT practices. However, the nature of 
tasks that integrate MT and CT remains elusive. This paper presents an exemplar from a 
larger study, where fractal explorations and simulation of problems in probability enabled 
by spreadsheets led pre-service teachers to develop mathematical concepts and also engage 
with CT practices. The tasks enabled the participants to engage in processes of visualization, 
generalization, recursion, iteration, and analysing algorithms, which are important from 
computational and mathematical standpoints. The evidence of student learning indicates a 
compelling argument for incorporating such tasks in foundational mathematics courses in 
pre-service teacher education programmes.
Keywords: Computational thinking, mathematical thinking, teacher education programmes, 
spreadsheets

Introduction 
Computational thinking (CT) is considered 
to be a skill set that is applicable across 
contexts and domains. The need to integrate 
CT in K–12 curricula has been widely 
acknowledged. Pei et al. (2018) have noted 
that advancement in computing technology in 
the past few decades has made it imperative 
“to make computational thinking a part of 
every student’s educational experience.” (Pei 
et al., 2018, p. 75). In light of the increasing 
role of technology in education, the PISA 
2021 Mathematics Framework recognises 
that mathematical literacy should leverage 
the “synergistic and reciprocal relationship 
between mathematical thinking and 
computational thinking” (OECD, 2021, p. 7).  
CT and mathematical thinking (MT) are 
closely related to each other. Some of 
the skills common to CT and MT include 

the ability to engage with challenging 
problems, reduce problems to simpler 
and more tractable versions, represent 
concepts and solutions in computationally 
meaningful ways, making abstractions and 
generalisations and engage with multiple 
paths of inquiry while solving problems. 
Thus, mathematics as a fundamental school 
subject is the natural choice for integrating 
CT-based activities. The National Education 
Policy 2020 emphasises this in its policy 
document by stating that “mathematics and 
computational thinking be given increased 
emphasis throughout the school years.” It 
recommends that CT be integrated into the 
mathematics curriculum through innovative 
methods such as using puzzles and games 
“that make mathematical thinking more 
enjoyable and engaging.” (p. 15)
However, developing tasks that integrate 
both CT and MT is not straightforward and 
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remains a major pedagogical challenge. 
Teacher preparation programs (TEPs), both 
in-service and pre-service, need to address 
this challenge. In general, foundational 
mathematics courses in pre-service TEPs 
emphasise school mathematical content 
and pedagogy but often fail to offer 
adequate opportunities for engaging with 
CT. In this article, we shall make a case 
for incorporating CT-based activities in the 
mathematics content courses in TEPs. We 
argue that pre-service teachers can develop 
CT skills if they engage in appropriately 
designed tasks that illustrate the practical 
significance of mathematics as a discipline 
and also enable them to apply mathematical 
concepts to real-world phenomena 
via computer-based explorations. We 
propose that spreadsheets can provide 
the appropriate learning environments for 
fostering MT and developing CT practices. 
Spreadsheets are easily accessible, do not 
require extensive knowledge of coding, and 
have low technical overheads as compared 
to programming languages. This article 
describes a study where CT- MT tasks 
enabled by spreadsheets, designed to elicit 
MT and computational skills, were integrated 
into a foundational mathematics course 
taught in the first year of an undergraduate 
four-year pre-service TEP. The aim of the 
course is to revisit school mathematics 
from a higher standpoint through in-depth 
exploration of the concepts and content. The 
author, who taught the course, selected 34 
pre-service teachers from among the 67 who 
were enrolled in the TEP. These pre-service 
teachers had volunteered to participate in 
the study and had studied mathematics up 
to grade 12. Their prior knowledge included 
secondary-level mathematical topics, such 
as algebra, probability, trigonometry, and 
coordinate geometry. They were also familiar 
with the basic features of Excel, such as 
inserting formulas in cells and using simple 
commands. The CT- MT tasks were designed 
by the author and covered a wide variety of 
topics, from fractal explorations to simulation 
of problems based on probability. 

Theoretical Framework
Researchers have interpreted CT and its 
connection with mathematics in different 
ways. The pioneering work by Papert (1980) 
and his colleagues led to concretizing the 
term CT. Papert believed that the primary 
goal of CT was to build new ideas. His theory 
of constructionism, considered to have arisen 
out of Piaget’s theory of constructivism, posits 
that learning can be enhanced if the learner 
engages in “creating a meaningful product.” 
In his book Mindstorms, he envisioned 
the computer as a “mathematics-speaking 
being” and delved into how constructionist 
math environments could integrate MT and 
CT. 
While the term CT was concretised by 
Papert, the credit for popularising it may 
be alluded to Jeanette Wing. She described 
CT as a “fundamental skill for everyone” 
and advocated that CT be given as much 
importance as reading, writing, and 
arithmetic in a child’s education. (Wing, 
2006, p. 33). According to her, CT comprises 
four primary components: decomposition, 
pattern recognition, abstraction, and 
algorithmic design. Decomposition is 
the process of reducing a mathematical 
problem into more tractable sub-problems. 
Pattern recognition involves identifying 
commonalities, structures, and regularities 
within mathematical data. Abstraction deals 
with generalizing patterns into mathematical 
results or formulae. Algorithm design 
refers to creating a sequence of steps that, 
when exercised by a machine (computer) 
or a human, can lead to the solution of 
the problem. While these fundamental 
components provide a clear understanding of 
CT with mathematics learning, incorporating 
these in mathematics lessons is not 
straightforward. To address the challenge of 
meaningfully integrating CT in mathematics, 
it would be helpful to have a framework 
for guiding teachers and practitioners to 
enable their students to engage in CT in the 
mathematics classroom. Ho et al. (2019) 
propose a framework comprising four 
design principles, based on the fundamental 
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components of CT, to enable teachers to 
interpret them for the instructional design of 
CT-MT tasks. These are framed in the form 
of questions.
Complexity Principle: Does the mathematical 
concept on which the task is based lead to an 
adequately complex problem? Is the problem 
worth solving, and can it be decomposed into 
simpler sub-problems? 
This refers to the idea that the mathematical 
task should be challenging enough so 
that finding its solution is a worthwhile 
pursuit. In other words, the task should be 
sufficiently complex so that it necessitates 
decomposition. If it is too simple and has an 
easy solution, then it would not need to be 
decomposed or reduced to a simpler form. 
Data Principle: Can the concepts be 
observable through data? Can the data be 
collected or created and then analysed?
This entails collecting or generating data 
from which patterns or structures may be 
identified.
Mathematics Principle: Can the problem be 
expressed in mathematical terms, and is a 
mathematical solution possible?
This refers to the mathematical formulation 
of the problem. A real-life problem or 
phenomenon needs to be represented 
mathematically so that it can be solved by 
mathematical means. 
Computability Principle: Does the problem 
lend itself to exploration? Is it programmable? 
Is it amenable to solutions via algorithms 
and computer programming?
This principle focuses on arriving at a 
solution either by a machine (computer) or a 
human being.
Other researchers, such as Weintrop et al. 
(2016), have also attempted to explicate 
computational thinking, especially in 
the context of STEM disciplines. They 
advocate a classification that includes four 
kinds of practices: those associated with 
handling data, modelling and simulation, 
computational problem solving, and 
systems thinking. Their article presents a 
sequence of lesson plans that integrate CT 

in high school science classrooms. Despite 
attempts by researchers, a lack of agreement 
concerning how CT can be integrated into the 
mathematics classroom remains a challenge. 
However, it is imperative to orient future 
mathematics teachers to the various aspects 
of CT in their mathematics content courses 
so that they are equipped to meaningfully 
incorporate CT in their teaching. This article 
is therefore a beginning step in exploring the 
integration of CT-MT tasks in foundational 
mathematics courses in TEPs and to enable 
pre-service teachers to accrue the benefits of 
engaging with such tasks. 

CT – MT Tasks
In this section, we will briefly describe 
two CT- MT tasks, one based on fractal 
explorations and the other on simulating 
the Birthday Paradox, which was assigned 
to the 34 participants in the study. These 
tasks were administered as a part of a larger 
module comprising five CT-MT tasks whose 
design was informed by the framework 
proposed by Ho et al. (2019). The tasks were 
implemented by the author in the classroom 
through reading materials, worksheets, and 
whole-class discussions. The worksheets 
comprised step-by-step investigations, 
which enabled the participants to explore 
the concepts. For computational work, most 
of the participants used MS Excel on their 
mobile phones, while a few brought their 
laptops to class. The fractal explorations 
took ten hours of classroom time, while the 
Birthday Paradox exploration took three 
hours. Post the completion of the tasks, the 
participants submitted their worksheets 
for evaluation and also documented their 
explorations in a file for their own records.  

Fractal explorations
The topic of fractals can be an excellent 
resource for engaging with ideas of 
recursion, iteration, self-similarity, and 
fractal dimension, all of which are important 
for developing MT and CT. The investigatory 
tasks in the worksheet required the 
pre-service teachers to explore various 
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attributes, such as length, perimeter, and 
area of the Sierpinski Triangle, Koch Curve, 
and Koch Snowflake and also create their 
own fractal patterns. The spreadsheet MS 
Excel was used as a vehicle for exploration. 
While investigating the Sierpinski Triangle 
(see Figure 1), participants predicted the 
geometric sequences, which emerged from 
computing the number of black triangles 
and the combined black area at each stage. 
Across stages, the number of black triangles 
led to the sequence 1,3,32,33,… whereas the 
shaded area followed the sequence 1, 3/4, 
(3/4)2… Recursive and explicit formulae for 
these attributes were derived for the nth 
stage as Sn = 3Sn−1, Sn= 3n and An = (3/4) 
An−1, An = (3/4)n respectively. At this point, 
the teacher asked the participants to reflect 
and comment on the two types of formulae. 
One participant responded, “The explicit 
formula is more useful as we can get the 
exact number of black triangles at any stage 
by inserting the value of n. This does not 
happen with the recursive formula. So, S5 = 
3S4 but I can’t calculate S5 unless I know S4. 
But if I use the explicit formula, S5 =35, I get 
the exact number.”  
Another student felt that the recursive 
formulae were also useful as they “highlighted 
an important aspect of the structure of the 
Sierpinski triangle.” Post this discussion, 
the participants generated numerical 
and graphical representations of the two 
sequences on a spreadsheet. This led to 
an interesting classroom discussion as one 
participant explained, “At least numerically 
and graphically, the spreadsheet helps us 
to visualize the Sierpinski triangle in higher 

stages. It is impossible to understand the 
growth of the fractal using only pictorial 
representations.” Another participant 
concurred, “As the number of stages increases 
beyond 3, the Sierpinski triangle becomes 
too complicated as many small equilateral 
triangles get added at every stage.” When 
asked by the teacher to comment on the 
graphical representations of the number of 
shaded triangles and the shaded area (Figure 
1), one participant observed “the graphs 
show opposite processes—growth as well as 
decline.” The teacher used this opportunity 
to enable participants to conclude that 
with an increase in the number of stages, 
the number of black triangles grows 
exponentially, whereas their combined area 
approaches 0. It was heartening to see the 
participants engage with different modes 
of representation of the Sierpinski triangle 
while at the same time acknowledging the 
benefits and disadvantages of each mode. 
Figure 1 illustrates how the fractal was 
explored using multiple representations—
numerically, graphically, and pictorially.
The notion of self-similarity was also explored 
within the different stages of Sierpinski 
triangle construction. This entailed 
identifying copies of earlier stages in later 
stages of the fractal. For example, in stage 
1 of the Sierpinski triangle, three copies 
of stage 0 can be seen, in stage 2, three 
copies of stage 1, and so on. One participant 
commented, “The idea of self-similarity can 
be used to build higher stages from lower 
ones. So I can use three copies of stage 3 to 
build stage 4 and so on.” This observation 
was an important milestone in the Sierpinski 
triangle exploration.

Figure 1: Exploring the Sierpinski triangle fractal using multiple representations
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Some participants expressed that although 
they had studied the topic of geometric 
sequences in school, it seemed “very 
abstract.” However, the fractal explorations 
helped them to see the relevance of the topic. 

One commented, “We had learned so many 
formulae on the topic of geometric sequence. 
Now I know why they can be used. 
Figure 3 illustrates the numerical and graphical 
exploration of the Kock snowflake in Excel”

Figure 3: Numerical and graphical exploration of the Koch Snowflake construction in Excel

While exploring the Koch snowflake in Excel, the participants were required to find the total area 
enclosed by the snowflake. It came as a revelation that as n increases, the number of stages 
increases, the additional area at each stage keeps decreasing, and the total area approaches a 
fixed value of 2√35 ≈0.69 (as shown in figures 2 and 3). The area inside the snowflake was also 
computed using the theory of geometric sequences as follows:

Figure 2: Stages 0,1,2 and 3 of the Koch Snowflake
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Exploration of the Koch curve (Figure 4) led 
to a discussion on matrix transformations. 
Students were scaffolded to obtain a sequence 
of four transformations, f1, f2, f3, and f4, 
which transition the Koch curve from stage 
n to stage n+1. The first step was to visualize 
the transition from stage 0, comprising 

a line segment of unit length, to stage 1, 
where the segment is trisected, the middle 
third removed, and an equilateral triangle 
is raised on the middle third. To achieve 
this, students used matrices to perform the 
transformations of shrinking, shifting, and 
rotating the line segment. 
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Figure 4: Stages 0,1,2 and 3 of the Koch Curve

Simulating the Birthday Paradox
The concept of probability is introduced and 
developed at the secondary school stage and 
forms an integral part of the curriculum. 
The experiments used for illustrating the 
fundamental concepts in textbooks tend to 
be restricted to coin tossing, die rolling, or 
selecting cards from a deck of cards. While 
these may be useful as examples, they do 
not relate the concept of probability to real-
life phenomena, thus rendering the topic 
dull. Interesting problems, such as the 
Birthday Paradox, leading to meaningful 
explorations can truly enliven the teaching of 
probability. Such problems provide a context 
to introduce the concept of simulation, a 
method for mimicking random behaviour or 
phenomena through the use of computers. 
In this section, we shall illustrate how the 
pre-service teachers explored the birthday 
paradox by first mathematizing the problem 
and then simulating it on MS Excel.
They were presented with the following 
problem in the worksheet:
How many people do you need to bring 
together to ensure that there are at least 

two people with the same birthday? Here 
birthday refers to birth date and month.
Most students were unsure of the answer. 
However, the immediate response from a 
few participants was 367. One explained, 
“There are 366 possible distinct birthdays, 
including 29th February (in a leap year). If 
one more date is added to this list, it would 
coincide with one of the 366 dates.” However, 
when they were told that the chance of a 
birthday match in a group of 60 people 
was almost certain, their reaction was one 
of disbelief. This claim, popularly known 
as the birthday paradox, takes everyone 
by surprise. To verify this, an experiment 
was conducted, wherein 60 birthdays (of 
friends and relatives) were noted by the 
participants on slips of paper. These were 
folded and placed in a box. The box was 
circulated among the participants, wherein 
each participant selected a slip and recorded 
the date on it. The box was circulated till a 
match was found. The same experiment was 
repeated with another set of 60 birthdays, 
which again led to a match. Thinking this to 
be a coincidence, many students remained 
sceptical. However, everyone agreed that it 
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was impractical to keep listing birthdays 
to check for a match. For the teacher, this 
was an opportune moment to introduce the 
concept of simulation on a spreadsheet. The 
idea was to randomly generate 60 birthdays 
on Excel and check if the list had a repeated 
date. Several simulations could be generated 
very quickly in a matter of seconds. In each 
simulation, the first step was to generate a 
column of 60 integers between 1 to 12 (both 
inclusive, as shown in column B of Figure 
5) representing the months (1, 2, 3, etc. 
representing January, February, March, etc.). 
To achieve this, students were familiarized 
with the command RANDBETWEEN(1, n), 
which randomly generates an integer between 
1 and n. Hence RANDBETWEEN(1,12) was 
used to create a column of months. The next 
step was to use RANDBETWEEN(1,31) to 
generate a column of 60 integers between 
1 and 31 (both inclusive) to indicate the 
day of the month (column C of Figure 5). 
The data in columns B and C represent a 
set of 60 (randomly generated) birthdays. 

For example, a 10 in column B and 31 in 
column C represent the date 31st October. 
Scrolling through this list of dates to search 
for a match was time-consuming. To simplify 
the process, the operation =100*B1+C1 was 
used to convert the dates to three- or four-
digit numbers and store them in column D. 
Once this was done, the first one or two digits 
of the numbers (in the column called Bday) 
represented the month, and the last two digits 
represented the day of the month. Thus, 806 
in the list represents 6th of August, while 
1113 represents the 13th of November. This 
list of dates could now be copied to a different 
column and sorted so that the repeated date 
(birthday match) appeared in two consecutive 
rows, making it easily identifiable. In Figure 
5, after sorting, the repeated birthday is 428, 
that is, 28th April (column F), and 318, that 
is, 18th March (column H). The simulation 
was repeated several times to confirm that 
there is indeed a match every time a set of 
60 birthdays is randomly generated. This 
aroused the curiosity of the participants of 
the study.

Figure 5: Birthday Problem simulation in MS Excel
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The simulation was used to verify the claim 
that if we randomly gather 60 people, the 
probability of a birthday match is a certain 
event. One participant observed, “Each time 
we simulate a list of 60 birthdays, we see a 
match... Sometimes there is more than one 
match.” But another commented, “Simulation 
does not help prove the claim. It needs to be 
justified mathematically.” This was indeed a 
high point for the teacher, who realized 
that the pre-service teachers were not 
satisfied merely with a numerical 
verification but were looking for proof. The 
latter requires the problem to be analyzed 
using probability theory. This led to another 
interesting class discussion where students 
first computed the probability of a birthday 
match among three, four, and five people, 
respectively. They observed the patterns 
within these expressions and tried to arrive 
at a generalization for n people. The 
probability that all three people will have 
distinct birthdays in a group of three people 
is given by the expression  

Hence, the probability, that in a group of 
three people, at least two have the same 
birthday is given by  

Extending this argument to four people, the 
probability of finding a birthday match is 

and similarly for five people, it is.  

Students observed the pattern within 
these expressions and generalized the 
result to obtain the expression  

which represents the probability of a 
birthday match among n people. Using 
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factorial notation this was further 
simplified to: As n (the group size) 

approaches 60, the value of this 
expression approaches 1. The high 
point of this exploration was the fact 
that students were now convinced 
that the paradox was indeed true.

Discussion And Conclusion
Based on the “synergistic relationship 
between CT and MT” as espoused by the 
PISA mathematics framework, the study 
described in this article attempted to explore 
the potential of incorporating spreadsheet-
enabled CT-MT tasks in a foundational 
mathematics course in a pre-service TEP. In 
the study, 34 pre-service teachers engaged in 
modules comprising CT-MT tasks. The tasks 
were facilitated through reading materials, 
worksheets, and classroom discussions. The 
choice of the tasks was based on students’ 
knowledge of mathematical content and the 
four design principles proposed by Ho et 
al. (2019). Here we shall explain how these 
design principles informed the CT-MT tasks 
on fractal explorations and the Birthday 
Paradox, which were open-ended and 
investigatory. 
Complexity Principle: Fractals are complex 
objects that represent infinite recursive 
processes. However, observing their 
constructions in the initial stages can lead 
to an understanding of the nature of their 
growth. In the study, investigating attributes 
such as the length, perimeter, and area of the 
fractals in the initial stages led to geometric 
sequences, identifiable patterns, and their 
generalization. The Birthday Paradox, a real 
phenomenon, makes a claim that defies 
intuition. Yet exploring the probability of a 
birthday match in small group sizes (of three, 
four, and five people) helped us understand 
the problem, making it more tractable.
Data Principle: The data involved in the 
fractal explorations were numerical values 
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of the attributes in the different stages of 
the fractals. Similarly, the data required 
in the Birthday paradox was the random 
generation of birthdays, which could be 
obtained by collecting the birthdays of actual 
people or by simulation on a spreadsheet. In 
both explorations, the spreadsheet played a 
crucial role by quickly generating the data, 
thus enabling the participants to focus on 
observing patterns. 
The mathematical principle: The 
mathematical principle allows for the 
generalization of the patterns and 
regularities found in the generated data. 
This led to representing the attributes of the 
fractals mathematically through recursive 
and explicit formulae. In the Birthday 
paradox exploration, the patterns within the 
expressions of the probabilities of a birthday 
match for smaller group sizes led to a more 
general formula for a group of any size. The 
general formula then led to proof of the 
paradox.
Computability Principle: The recursive 
and explicit formulae of the fractal 
attributes could be easily incorporated into 
a spreadsheet to generate numerical values 
of the attributes at higher stages. Further 
graphical representations led to a deeper 
insight with regard to the nature of fractal 
growth. In the Birthday Paradox exploration, 
the simulation generated birthdays randomly 
to check for a match. Thus, the four design 
principles helped determine the suitability of 
these problems as CT-MT tasks.
An in-depth analysis of the participants’ 
responses revealed that the described tasks 
enabled them to engage in MT and CT 
practices. We summarize them here briefly.
Problem decomposition: To begin with, the 
participants explored the attributes of the 
fractals in the initial stages (0 to 4) through 
pictorial representations. This led them to 
observe important patterns in fractal growth. 
For example, in the Sierpinski triangle, a 
geometric sequence comprising powers of 3 
emerged while counting the number of black 
triangles across stages, whereas in the Koch 
curve, the number of line segments led to 

powers of 4. Similarly, while exploring the 
birthday paradox, the pre-service teachers 
began by collecting sets of 60 birthdays to 
search for a match. However, to analyze 
the problem, they used the definition of 
probability to work out the probabilities of a 
birthday match in groups of 3 and 4 people. 
In both tasks, simplifying the problem led to 
a starting point for exploration. 
Identifying geometric sequences within 
fractal attributes entails MT, whereas 
observing their recursive self-similar 
structures requires CT. In the Birthday 
Paradox task, visualizing the simulation 
steps on the spreadsheet requires CT, while 
deriving the expressions of the probability of 
a birthday match requires MT.
Pattern recognition and generalization: 
The participants worked with the geometric 
sequences arising out of the attributes of 
the fractals and generalized these patterns 
symbolically by deriving mathematical 
formulae, both recursive and explicit. Also, 
identifying attributes of the nth stage in 
terms of the (n-1)th stage or using copies 
of the (n-1)th stage to build the nth stage 
led to understanding self-similarity and 
fractal dimension. This enabled them to 
visualize recursion while also expressing 
it symbolically. In the birthday problem, 
observing patterns in the expressions of 
probabilities of birthday matches in small 
group sizes provided insight into the general 
formula. Therefore, we generalized the 
identified patterns in both tasks.
Data generation: The pre-service teachers 
incorporated the recursive and explicit 
formulae (for attributes such as area 
and perimeter of the fractals) into the 
spreadsheet. Using this approach, they 
created meaningful numerical data, 
which further helped them to observe the 
properties of the fractals at the higher stages 
even without pictorial representations. 
In the case of the Birthday Paradox, 
simulation helped to quickly generate sets 
of 60 randomly generated birthdays. They 
were able to verify the paradox by scrolling 
through these data sets.



Synergistic Relationship Between Computational and Mathematical... 55

Voices of Teachers and Teacher Educators

Abstraction: As participants worked with 
pictorial and symbolic representations, 
they made connections between geometric 
representations of fractals and algebraic 
expressions, while the spreadsheet enabled 
them to visualize the fractals numerically 
and graphically at higher stages. Here 
participants could see the benefits of multiple 
representations in action. Feedback taken 
from participants at the end of the fractal 
tasks revealed that their understanding of 
geometric sequences was strengthened and 
that they found the topic more relevant. 
Arriving at the formula for the probability of a 
birthday match for any number of people led 
to a symbolic representation of the birthday 
paradox. Further, participants were able to 
mathematically justify the reason for finding 
a birthday match among 60 people, while 
logical reasoning tells us that the number 
should be 367. Working through this task 
strengthened my understanding of several 
foundational concepts in probability theory. 
Hence, these open-ended tasks enabled 
by spreadsheets highlight the potential for 
integrating CT practices in the mathematics 
classroom. They provided a natural 
context for engaging in the processes 
of visualization, recursion, iteration, 
generalization, and analyzing algorithms, 
which are essential from computational as 
well as mathematical standpoints. Further, 
as argued by Pea (1987), technology in the 
form of spreadsheets acted as an amplifier 
as it increased the scope of the tasks by 
providing access to numerical data that 
could not have been obtained manually. This 
was evident from the participants’ responses 
during classroom discussions and feedback 
taken at the end of the tasks. With regard to 
the fractal explorations, many participants 
expressed that “the numerical and graphical 
outputs provided by the spreadsheet led to 
a deeper understanding of the fractal, which 

could not have been obtained manually or 
through pictorial representations.” In the 
birthday paradox investigation, they shared, 
“We can’t keep gathering groups of 60 people 
to check for a repeated date. That would 
be impossible. However, the spreadsheet 
instantly generates the dates, which aids in 
verifying the paradox. Technology also played 
the role of a reorganizer, in the sense that each 
task had a different trajectory of exploration. 
It also gave access to higher-level concepts 
by affording the possibility to explore the 
problem through multiple representations—
numerical, symbolic, and graphic. In general, 
by working through the tasks, the pre-service 
teachers developed the capability of using the 
spreadsheet meaningfully for exploration. 
They also appreciated the power afforded 
by the spreadsheet in the investigations. 
While attempting the tasks, they engaged in 
processes such as looking for patterns and 
invariances within data, making conjectures, 
selecting between multiple representations, 
simplifying or generalizing aspects of the 
problem being explored, and identifying 
new opportunities for exploration. All these 
are important skills for developing CT and 
MT. About 28 participants rated the CT-MT 
tasks as meaningful and relevant. One 
participant mentioned, “These tasks are 
fascinating, and they make the topics so 
interesting. This is different from the math 
I learned at school.” This study therefore 
emphasizes that appropriately designed 
CT-MT tasks, founded on the symbiotic 
relationship between MT and CT, can lead to 
deeper mathematical learning while fostering 
meaningful use of technology at the same 
time. Further, the positive feedback from the 
pre-service teachers who participated in the 
study and the evidence of their engagement 
in the tasks provide a compelling argument 
for incorporating such CT-MT tasks in 
foundational mathematics courses in TEPs.
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