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reference to the actual value. For example, in
e 1+ xx ≈ , if the term  x /22  is smaller than the 
accuracy we are looking for, then the term and 
higher order terms can be ignored.

Consider the following examples from physics 
to understand the importance of the above 
mentioned approximations and the order of 
magnitude calculations.
1.	 We say sinθ = θ for small angle where  

θ is in radians. Discuss up to what value 
of θ is this approximation valid? Check 
for same value of θ, if the approximation 
is valid for cos θ ≈ 1– θ2 /2.

	 Discussion
	 Let us consider 

� �= = =30 6 0 523598
0 / .radian   

for which sin . .θ = 0 5 Thus, for at 30o, 

difference between sinθ and θ is about 
4%. Thus, depending on the accuracy we 
are looking for, we should say sinθ and θ 
lie within that many per cent. In this case, 
the second term in the expansion 
becomes, θ 3/6 = 0.024 which now, at 30o, 
cosθ = 0.866025 and 1 – θ 2/2 = 0.862922. 
Here, the error would be about 0.35%. 
Next term, θ 4/4 = 0.0031. Check similar 
difference for 10o.
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In this article, (ninth in the series), we present problems for a problem-based learning course based on the 
order of magnitude, approximations and errors.

Introduction

In this article, ninth in the Problem-based 
Learning (PbL) series, we consider various 
examples from different areas of physics 
where we often make approximations. We 
are trying to discuss the meanings of these 
approximations.

Approximations with Functions
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For all the above approximations to be valid, 
we must have x<<1 .

The limit of approximation is defined by the 
value of the first term which is ignored with 
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	 For earth
M
R2

11
1 46 10 .  SI units

	 For sun near earth M
r

sun
2

7
8 89 10 . SI 

units

	 For moon near earth 
M

r
moon
2

5
4 97 10 .  

SI units , using the data given in Example 
4 below. Thus, contribution of the sun 
is 4 orders and that of moon is 6 orders 
smaller than that due to earth. Hence, for 
practical purposes, we ignore the effect 
due to the sun and the moon. However, 
when it comes to force on large masses as 
the earth and its ocean, even a tiny effect 
can prove to make a significant difference 
and due to the size of the earth can cause 
tides in the ocean (see Example 4 below).

4.	 What causes tides? We want to 
understand tides in the ocean based on 
Newton's law of gravitation. Light takes 
500 seconds to travel from the sun to 
the earth and the diameter of the earth 
is 6,400 km. From this information, find 
out the difference in gravitational pull 
(acceleration) experienced by a body 
when it is near the sun to that when it 
is far. [Given: g   6 67 10

11 2 2. /Nm kg  
and mass of the sun    2 10

30
kg ]

	 Discussion

	 g GM
r-R

snear   


2

2
0 005928889. /m  and 

g GM
r +Rfar   


2

2
0 0059278772. /m s

	 Which gives g=1.011×10 cm/s-6 2 . 

2.	 Assuming earth to be a perfect sphere 
of radius 6,400 km and Mt. Everest to 
have a height of 8 km, find the greatest 
distance on earth’s surface from where 
Mt. Everest will be visible.

	 Discussion
	 Consider the diagram 

shown in the figure 
below.

	 Here, h is the height 
of the mountain and R 
the radius of the earth. 
If a tangent is drawn 
from the peak of the 
mountain to the earth’s surface, then S 
represents the maximum distance on the 
earth's surface from where the mountain 
would be visible [assuming (that a symbol) 
the earth's surface to be a perfect sphere].

	 Referring to the figure : R R h ( )cosθ
Considering h R<<  we can get
cos - /θ = 1 h R   Comparing this with 
approximation cos /θ θ1 2

2− , we get 
θ2 = = =2 16 6400 1 400h R/ / /  i.e. θ =1/20  
radian or 9/ππ degree. This gives  
S =Rθ = 6400/20 =320km  Note that here we 

used approximation 
1

1
1

 + x 
x 

, where 
x=h/R  Here, x2 2

1 800  / and higher 
order terms can justifiably by neglected. 

3.	 Calculation of g: When we calculate g 

near the earth surface, we take g = GM
R2

where M= ×6 1024 kg  and R =  6 4 10
6. .× m   

Why do we ignore the effect of the 
sun and moon near the earth surface, 
despite the fact that the sun is huge?

	 Discussion
	 Let us check the contribution of each near 

the earth’s surface.



7

Problem—Based Learning in Basic Physics - IX

Considering the mass of the oceans, which 
is a fraction of the earth, this generates a 
huge difference in the force causing tides. 

	 Now, from the mass of the moon = 
7.3483×1022 kg and earth-moon distance = 
3,84,400 km calculate similar differential g, 
(say Δg) at earth due to moon. Considering 
the relative position of the earth, sun and 
moon, can you estimate the magnitude 
that causes tidal effect on the earth on a 
new moon day, full moon day and first or 
third quarter? Here, assume that sun-
earth-moon are along the same line on a 
new moon and full moon day (not in the 
same order as you can understand). What 
can happen if they align on the same line?

	 Take the radius of the sun to be 7×108 m 

and that of a black hole to be R = GM
c2

, 

where c is the speed of light. Take the 
average height of a person to be 1.5 m. 
Calculate differential g between the head 
and the toe of an average height person 
on the surface of the earth, sun and black 
hole of one solar mass. This tidal gravity 
on the earth acts on the ocean which is 
a huge mass (that of ocean), say 100th of 
that of the earth. Can you calculate this 
tidal (differential) force on this mass on 
earth? Estimate this tidal (differential) 
force that a normal human (average mass 
50 kg) would experience (difference of g 
between head and toe) on the surface of 
(i) sun (ii) 1 solar mass black hole. [Use a 
calculator and preserve at least 8 digits 
after decimal for all your calculations].

5.	 Why water vapour at 100oC burns the 
skin whereas at room temperature it 
does not?

	 Discussion: The average kinetic energy 
of a gas molecule is considered to be of 
the order of kBT where kB � � �

1 38 10
23. .  

J/K is the Boltzmann constant and T is 
the absolute temperature. Accordingly, 
water molecule (of water vapour) at 
room temperature (300 K) has kinetic 
energy k T

B
eV≈ 1 40/ , whereas at 

400 1 30K eV, / .k TB ≈ Can you explain why at 
300 K water vapour is harmless, whereas 
at 400 K it feels hot and can even burn the 
skin? 

	 [Hint: the distribution of molecules ΔN in 
the energy range between E and E + ΔE is 
given by Maxwell-Boltzmann distribution 

function: 
N = 2

k T
Ne E ” E.

B

-E /k T
3

2

B
1

2
À

À� �
	 For simplification, you may assume energy 

at E  ≈ 1 eV  (energy just sufficient to cause 
burn) in the interval ”E k T.B≈ [You should 
get about 104 times more molecules having 
energy 1 eV at 400 K compared to that at 
300 K].

6.	 Estimation of the size of an atom
	 Discussion: This means mass of one 

aluminum atom is mAl
A

A

M
N

= , where,  

NA = 6.02×1023/mole is the 
Avogadro number. This means, 
the volume occupied by one atom 
(assuming cubic arrangement) is 
V a m

p
 mA� � � � �3 30 3

16 6 10. .This gives 

a =  .2 554 10 2 554
10. . 
m A

o  Here 'a' 
can be treated as diameter of the atom. 
Actual crystal structure of aluminum is 
FCC that gives 4 atoms per cubic cell 
which modifies the calculation to get  
a = 4.05 Ao. The separation of atoms in 
FCC gives the diameter of the atom. Thus, 
aluminum atom radius is estimated to 
be 1.43 Ao. We can safely consider typical 
atomic radius to be of the order of 1 Ao.
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7.	 What can exist inside the nucleus?
	 Discussion: Consider an aluminum 

atom which has an atomic weight A = 
27. The radius of a nucleus is given by 
R=R A0

1
3 .  Where R0 = 1.22 Fermi. [1 

Fermi = 10 -15 m]. This gives RAl ≈ 4  
fm. Any particle — proton, neutron or 
electron, if inside the nucleus will have 
uncertainty in position of the order of 4 
fm. From uncertainty principle, this gives, 

p p h
x

kg m/s 


   1 66 10
19. .  For 

electron, this gives speed greater than 
that of light. Which means electron will 
have energy E= pc = 5 10 47

11 
J MeV, 

whereas for proton and neutron  

	

	 Electrons observed in decay have much 
less energy , and thus cannot exist inside 
the nucleus as independent particles. 
Proton and neutron, on the other hand, 
can exist inside the nucleus.

8.	 Discussion of Simple  
Harmonic Motion (SHM)

	 In case of a pendulum, the differential 
equation is solved for small amplitude 
taking approximation sin θ ≈ θ. Thus, 
expression for period obtained would be 
approximate within those appropriated 
limits.

	 In case of spring, we estimate, 

	 assuming spring to behave as elastic 
for extension and compressions 
produced. For a perfectly elastic spring 
potential energy, 

	 whereas in reality, spring can neither be 
compressed by indefinite amount nor 
extended. Thus, V must have higher order 
terms and should have expression of the 

type V =  kx + ax + bx   + ... 
1

2
2 3 4

 

Here, the values of ‘a’ and ‘b’ are small 
compared to ‘k’ and thus, the 
corresponding terms become important 
only when 'x’ is large. Time period is also 
accurate within this approximation.

9.	 Infinity in Physics: Examples from 
Electrostatics and Magnetostatics

	 Discussion: In electrostatics, we deal 
with infinite line of charge, infinite 
charge plane, and in magnetism, we 
deal with infinite straight wire carrying 
current. In real life, we do not have such 
infinite objects. Then, why do we derive 
such expressions? In each of the above 
mentioned case, we find an expression for 
field at some distance from these infinite 
objects. Consider an infinite plane. For 
any point outside this plane, we can have 
two elements exactly at the same distance 
from the foot of the perpendicular, 

on the plane contributing to the field. 
The field contributions from these two 
elements have two components each. The 
components parallel to the plane cancel 
each other and the one perpendicular to 
the plane add up and survive. Thus, field 
will always be perpendicular to the plane. 

E p
m

MeV 
2

2
1

T = 2π
m
k

V = 1
2

2kx
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What if we have a finite size plate? Even 
in this case, if we are sufficiently close to 
the plane surface (distance is very small 
compared to the dimensions of the plate), 
the result of infinite plane applies. In case 
of parallel plate capacitor, if the separation 
between plates is too small compared 
to the size of the plate, field lines are all 
perpendicular except near edges. These 
effects would not be negligible if plate 
separation is comparable to the size of  
the plates.

	 We encourage readers to construct 
similar line of arguments for linear charge 
distribution and straight wire carrying 
current.

10.	 Infinity in Exponential Equations

Now, consider famous equations like

(i)	 N=N e0
- tll from radioactive decay

(ii)	 q Q e   
1

t
RC

for charging of a 
capacitor in an RC circuit

(iii)	 q Q e   
1

t
RC for growth of current in 

an LR circuit

Here 
1
»

RC, ,  and 
L
R  have dimensions of 

time and are called time constants. In each 
case, we can write time constant as τ and 
exponential term can be represented as 

We say that as  
What does infinite time mean here? 

Consider the values 

e e
e e
e

 

 



 
 


1 2

3 4

5

0 3679 0 1353

0 0498 0 0183

0 0067

. , . ,

. , . ,

. .

Thus, t Ä→ 5  is good enough for infinity at 
0.7% accuracy and system would stabilise 
for all practical purposes as the measuring 
instrument may not be sensitive enough to 
record 0.7% variation. Otherwise, we need to 
consider higher values of t.

Note: Even when we say 
e x e xx x    1 0 1as ce, sin , the 
value of x determines the limit of this 
approximation.
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