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In this article, fifth in the series, we present problems for a problem-based learning course in the area of

electricity and magnetism. We present the learning objectives in this area of basic physics and what each

problem tries to achieve through its solution.

In this article, fifth in the series, we present

problems on electricity and magnetism.

Methodology and philosophy of selecting these

problems have already been discussed (Mody and

Pradhan 2011).

To review the methodology in brief, we note here

that this Problem-based Learning (PBL) starts

after students have been introduced to formal

structure of physics. Ideally students would

attempt only main problem. If they find it difficult,

then depending upon their area of difficulty, right

auxiliary problem have to be introduced by teacher

who is expected to be a constructivist facilitator.

Teacher may choose as per her/his requirement

or may construct questions on the spot to guide

student to the right idea and method.

Problems on Electricity and

Magnetism

Learning Objectives

1. Coulomb’s law: electric force, electric field and

electric potential.

2. The fact that force and field are vectors where-

as potential is a scalar and how they are to be

calculated due to charges: individual and

configuration.

3. Capacitor as a storage device for charge and

energy and its role in different circuits.

4. Ohm’s law and Kirchhoff’s laws for current

distribution in a dc electric circuit.

5. Biot-Savart’s law and calculation of magnetic

field due to different current configuration.

6. Electromagnetic induction and calculation of

induced emf.

7. To understand mathematical structure dealing

with above-mentioned points.

Electrostatics

Problems

1. Three point charges q, 2q and 8q are placed

on a 9 cm long straight line. Find the positions

where the charges should be placed such that

the potential energy of the system is minimum.

In this situation, what is the electric field at the

position of the charge q due to the other two

charges? [JEE 1987]
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• This problem involves calculation of electric
potential energy and electric field due to
simple distribution of point charges.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To find number of possible ways in
which three charges can be arranged
along a straight line.

(b) To calculate potential energy for each
distribution, minimise potential and see
which configuration gives minimum
value of potential energy.

(c) To calculate electric field at the site of ‘q’
for minimum configuration.

2. The distance between two positive charges q
and 4q is ‘l’. How should a third charge Q be
arranged for it to be in equilibrium? Under
what conditions will the equilibrium of the
charge Q be stable or unstable?

• This problem involves balance (equality) of
the forces due to two charges separated by
a distance on the third charge.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To equate Coulomb’s force due to two
charges on the third charge and estimate
the distance at which that happens.

(b) To see that there are two solutions to a
quadratic equation which in this case is not
so obvious.

(c) To understand that the solution for a point
in between correspond to stable and
outside correspond to unstable equilibrium.

3. Two fixed charges –2Q and Q are located at the
points with co-ordinates (-3a, 0) and (+3a, 0)
respectively in the xy-plane. (a) Show that all
the points in the xy-plane where the electric
potential due to the two charges is zero lies on

a circle. Find its radius and the location of its
centre. (b) Give the expression for potential V(x)
at a general point on the x-axis and sketch the
function V(x) on the whole x-axis. (c) If a
particle of charge +q starts from rest at the
centre of the circle, show by a short qualitative
argument that the particle eventually crosses
the circle. Find its speed when it does so.
[JEE 1991]

• This problem involves calculation of
potential due to two charges in a plane.
Finding locus of all the points at which
potential is zero. Sketching the potential as
a function of x.  Seeing what happens to a
charge at the centre of the circle.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To calculate potential as a function of (x,y)
in a plane due to two charges.

(b) To find locus of zero potential points.

(c) To plot potential for points on x-axis.

(d) To find out whether charge +q would cross
the circle.

4. Two isolated metallic solid spheres of radii R
and 2R are charged such that both of these
have same charge density σ . The spheres are
located far away from each other, and
connected by a thin conducting wire. Find the
new charge density on the bigger sphere.
[JEE 1996]

• This problem involves redistribution of
charge till potential on the two surfaces
become equal, and finding new
distribution.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To find total charge and potential on each
sphere.
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(b) To decide criteria for distribution of

charges when two spheres are connected

by a conductor.

(c) To find new charge distribution.

5. A conducting sphere S
1
 of radius r is attached

to an insulating handle. Another conducting

sphere S
2
 of radius r is mounted on an

insulating stand. S
2
 is initially uncharged. S

1
 is

given charge Q, brought in contact with S
2
, and

removed. S
1
 is recharged such that the charge

on it is again Q; and it is again brought into

contact with S
2
 and removed. This procedure

is repeated ‘n’ times. (a) Find the electrostatic

energy of S
2
 after n such contacts with S

1
. (b)

What is the limiting value of this energy

as n → ∞ ? [JEE 1998]

• This problem involves generalisation of the

process to large n value of what was done

in problem 4. above.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To follow the procedure in problem 4.

above repeatedly and see how it can be

generalised for some ‘n’ trials.

(b) To find what would happen after large

number of steps.

6. Three concentric spherical metallic shells A, B

and C of radius a, b and c (a < b < c) have

surface charge densities σ, –σ and σ,
respectively. (i) Find the potential of the three

shells A, B and C. (ii) If the shells A and C are at

the same potential, obtain the relation between

a, b and c. [JEE 1990]

• This requires students to know how to

calculate the potential at a point inside a

sphere, outside and on the sphere due to

surface charge.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To know that electric field inside a surface

spherical charge distribution is zero and

hence potential should be constant.

(b) To add potential at each shell due to the

each of the three shells.

(c) To use condition given in part (ii) to get

relation between (a), (b) and (c).

7. A 20 pF parallel plate capacitor with air as

medium is charged to 200 V and then

disconnected from the battery. What is the

energy U
i
 of the capacitor? The plates are then

slowly pulled apart (in a direction normal to the

plate area) so that the plate separation is

doubled. What is the mechanical work done in

the process? What is the new energy U
f
 of the

capacitor?

8. A 3µF parallel plate capacitor is connected to a

battery of 400 V. The plates are then pulled

apart as in P (7) above, so that the capacitance

value becomes 1µF. This operation is carried

out while the capacitor is still connected to the

battery of 400 V. Calculate the mechanical

work done. Account for the loss of energy of

the capacitor.

9. In the problems P (7) and P (8) above what

happens if dielectric slab or a metallic block is

introduced instead of moving the plates.

• In problem 7, charge is conserved and work

has to be done to move capacitor plates

apart against electrostatic attraction, which

increases energy stored in the capacitor.

• In problem 8, voltage remains constant as

battery remains connected but capacitance

and hence charge on the capacitor

decreases. Reverse current flows and

battery gets charged.

PROBLEM-BASED LEARNING IN BASIC PHYSICS - V
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• Dielectric and metallic block both would be

pulled in due to surface induced charges. In

case of dielectric energy would increase

due to increase in capacitance whereas in

case of metallic plate if thickness were less

than capacitor plate spacing would reduce

effective distance between two plates and

hence energy stored would increase.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in these problems are:

(a) To know how energy of a capacitor

depends on C, Q and V.

(b) To know when to use charge and energy

conservation.

(c) How does dielectric and conductor slab

affect the geometry and charge or energy

stored in the capacitor?

Electric Current

10. In the circuit shown in Fig. 1 the voltage

measured across 2 K resistor was found to be

6 V, find it across 3 K. Find the resistance of

the voltmeter. What would be the voltages

measured if voltmeter was ideal?

Fig. 1

• This problem makes students familiar with

use of Ohm’s law

•  It conveys limitation of measuring device;

in this case it is voltmeter and how its

resistance affects measurement.

Tasks inTasks inTasks inTasks inTasks involvedvolvedvolvedvolvedvolved in this problem are:

a. To apply Ohm’s law and Kirchhoff’s law to

the circuit.

b. To recognise contribution of voltmeter in

the circuit due to its finite resistance.

11. In the circuit shown in Fig. 2 below, find

current through each of the resistors. [Theraja]

Fig. 2

• This problem involves application of

Kirchhoff’s laws for loop and junction to

find current through each branch in the

circuit.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To apply Kirchhoff’s laws for loop (voltage)

and junction (current).

(b) To solve the equations thus obtained to get

current through each resistance.

• This problem is touchstone in the same

sense as an inclined plane problem. It

familiarises students with application of

Kirchhoff’s laws for loop and junction.

12. Twelve resistors each having resistance of

value R are connected in the configuration of a

skeleton cube. Referring to Fig. 3, find the

effective resistance offered between points

(i) A and F (ii) A and G (iii) A and B
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Fig. 3

• This problem shows the effectiveness of a
network, familiarizes students with
application of Kirchhoff’s law and teaches
how potential difference is path
independent and how to exploit symmetry
of the situation.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To use symmetry to see how current gets
distributed through different elements.

(b) To apply Kirchhoff’s law (as an alternate
method) to distribute current.

(c) To use the fact that potential difference
between two points in a circuit is
independent of the path chosen.

(d) To equate it to potential difference across
effective resistance and hence evaluate the
effective resistance.

Magnetism

13. A square loop of wire of edge ‘a‘ carries a
current i. Show that the value of B at the centre

is given by, / .
o
i aµ πB = 2 2 . Also find magnetic

induction at any point on the axis.

14. A wire in the form of a regular polygon of n
sides is just enclosed by a circle of radius ‘a‘. If
the current in this wire is ‘i‘, show that the

magnetic induction at the center of the circle is
given by π πoB = (µ ni/2 a) × tan( /n).  Show that
as n → ∞ this result approaches that of a
circular loop.

• Problems 13 and 14 involve application of
formula arrived at for magnetic field due to
a current-carrying wire of finite length.

• Problem 14 involves generalisation to n-
sided polygon and checking if the result
matches with circle if ‘n’ is large.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To find angles subtended by straight
conductors of finite length at the point
(centre of a regular polygon).

(b) To calculate magnetic field due to one such
side and hence ‘n’ sides.

(c) To let ‘n’ be very large and see if result
reduces to that of a circle.

15. Find magnetic field at any point on the axis of a
circular current carrying loop.

•  This problem involves calculating magnetic
field on the axis of a circular loop using
Biot-Savart’s law.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To apply Bio-Savart’s law to a current -
carrying loop.

(b) To work out direction of field due to
diametrically opposite elements.

(c) To find out which component contributes
and which one gets neutralised.

(d) To integrate to final value of B-field.

16. Current flows around the cubical wire frame in
the figure given. What is the direction and
magnitude of the magnetic field at the centre

PROBLEM-BASED LEARNING IN BASIC PHYSICS - V
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of the cube? [Hint: you may find it useful to

employ superposition principle.][InPhO 2004]

Fig. 4: Skeleton Wire

• This problem is an extension of problem 13

but in 3-dimension but can be easily solved

if one focuses on symmetry consideration.

Tasks involved Tasks involved Tasks involved Tasks involved Tasks involved in this problem are:

(a) To recognise what happens if missing

wires were there.

(b) To recognise that missing wires put back

effectively adds nothing to the problem but

facilitates viewing as combination of

squares.

(c) To find magnetic field of a square loop at a

point on its axis and superpose all such

contributions  vectorally.

Electromagnetic Induction

17. A metal rod OA of mass m and length r is

rotating with a constant angular speed w in a

vertical plane about a horizontal axis at the end

O. The free end A is arranged to slide without

friction along a fixed conducting circular ring

in the same plane as that of rotation. A

uniform and constant magnetic induction BBBBB is

applied perpendicular and into the plane of

rotation as shown in Fig. 5. An inductor L and

an external resistance R are connected

through a switch S between the point O and a

point C on the ring to form an electric circuit.

Neglect the resistance of the ring and the rod.

Initially the switch is open.

Fig. 5

(a) What is the induced emf across the

terminals of the switch?

(b) The switch S is closed at time t = 0.

(i) Obtain an expression for the current as

a function of time.

(ii) In the steady state, obtain the time

dependence of the torque required to

maintain the constant angular speed,

given that the rod OA was along the

positive X-axis at t = 0. [JEE 1995]

• This problem requires students to use

Faraday’s laws and Lenz’s law to find

induced emf and induced current in the rod.

• The problem also involves working of an

LR circuit and effect of gravity on the

rotating rod.

Tasks involvedTasks involvedTasks involvedTasks involvedTasks involved in this problem are:

(a) To calculate induced emf using Faraday’s

laws and Lenz’s Law.

(b) To find current knowing the fact that given

circuit is an LR circuit.
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c. To incorporate the fact that rod is in

vertical plane and hence is under influence

of gravity and calculate the torque needed

for constant angular speed.

Solutions

1. Electrostatic Field and Potential

V
q q

x

q q

d

q q

d x
= + +

−






1

4
0

1 2 2 3 3 1

πε ( )

For potential to be minimum :

∂
∂

= ⇒ =
±

V

x
x

d

q q
0

1
1 3
/

: negative solution ruled out  (as it means x  > d)

qqqqq
11111

qqqqq
22222

qqqqq
33333

xxxxx
0

/(1 / 4 )V πε

q 2q 8q 6.65 7.998q2

2q q 8q 3.0 3.778q2

q 8q 2q 5.27 6.029q2

2nd arrangement indicates the minimum

configuration.

Alternatively

Since potential energy depends on   q
1
 q

2  
, large

charges should be kept apart.  This also gives 2nd

arrangement as mentioned.  Substituting all the

values:  d = 9  and q
1 
=2q  and q

3
 = 8q  ⇒ x = 3 cm.

Electric field in this situation at q  due to the other

two will be:

2. Static Equillibrium

Arrangement 1

Arrangement 2

Arrangement 3

Naturally  it is only 1st arrangement that can be

equilibrium as 2nd and 3rd arrangement means

same direction of force due to each charge.

In 1st arrangement  :   equating the

two forces.

∴ ( l-x)2 = 4x2 ⇒  l – x = + 2x

∴ x = l/3 or x = - l     the second solution is ruled

out any way.

Thus at  x = l/3  charge will be stable (along the

line of charges) irrespective of sign of Q.

3. Electric Potential

(a) V x,y( ) = −

+( ) +





+
−( ) +










1

4

2

3 2 2
1 2

3 2 2
1 2πε

o

Q

x a y

Q

x a y
/ /














V(x, y) = 0 ⇒  4[(x-3a)2+y2] = [(x+3a)2+y2]

PROBLEM-BASED LEARNING IN BASIC PHYSICS - V
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Which gives :

x2 + y2 – 10ax + 9a2 = 0  :    Circle with centre : (5a, 0)
and radius r = 4a

(b) On x – axis : y = 0

∴ V(x) =
x + a a

Q

4

-2

3
+

1

x - 3πε
0







Fig. 6

(c)  For q at (5a,0) :   force

{ }
0 0

πε πε 2
F =

a a a

qQ qQ
2 2

1 1 7
- =

4 32(2 ) (8 ) 4

in positive x-direction.

 K.E. at (x = 9a)  + P.E. at (x = 9a)  =   P.E. at (x = 5a)

⇒ v =
qQ

ma4
0

1
2

2πε ( )






4. Electrostatics and Surface Charge

Distribution

Q
1
 = 4πR2σ  and Q

2
 = 4π(2R)2σ

V
1
 = Q

1
/4πε

0 
R  =σR/ε

0     
a nd similarly V

2
 = σ (2R)/ε

0

When the two spheres are connected, charge

transfer takes place till both the potentials
become equal such that total charge is conserved.

Q
1
 + Q

2
 = Q

1
’ + Q

2
’  with σ

1 
andσ

2 
, respectively, such

that V
1
’= V

2
’ .

This gives σ
1
+4σ

2
 = 5σ ⇒ σ

1 
=5/3σ   and     σ

2
=  5/6σ

5. Electrostatics and Surface Charge

Distribution

Step I:Q = q + q
1
  (here q is the charge on S

1
and  q

1

is charge on S
2
 after first contact)

and q/r =q
1
/R  ⇒  

 
 

1

R
q  = Q 

R + r

 Step II:  Q + q
1
 = q’ + q

2
 (here q’ is the charge on S

1

and q
1
 is charge on S

2
 after second contact )

and     

⇒ 

repeating the procedure gives the nth step:

(a) 

where 

(b) as n → ∞ xn → 0

∴ U
Q

R

x

x

Q R

r
n→∞ =

−






=
2

0

2 2

0

28 1 8πε πε
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6.  Electrostatics

(i)   Potential at A due to B and C :

1

4

4 4

0

2 2

πε

σ π σ π− +





. .b

b

c

c

due to A itself :   
1

4

4

0

2

πε

σ π. a

a







∴ = − +( )V a b c
A

σ

ε0

Similarly :V
a

b
b c

B
= − +








σ

ε0

2

 and

V
a

c

b

c
c

C
= − +








σ

ε0

2

(ii)    V
A
 = V

C 
⇒ a – b + c = (a2- b2) /c  + c

∴ c = a + b

7. Electrostatics: Capacitance

U
i
 = ½ CV 2 = 4×10-7 J

Since  plates are disconnected from the batteries,
Q remains constant and hence U = (½ )(Q2/C)
where C = εo 

A/d  and since d is doubled, C gets
halved and U

f
 = 2U

i

The additional energy comes from the work done

in moving plates apart. Thus work done

W = U
i
= 4×10-7 J  and U

f
= 8×10-7 J

8. Electrostatics: Capacitance

As p.d. across capacitor plates remain constant,

mechanical work done is zero.

∆U = ∆( ½ CV2) = ½ (∆C) V2= - 0.16 J

The loss of energy indicate that energy returned to

the battery.

9. Electrostatics: Capacitance

In Fig. 7 if dielectric or metallic block is

introduced, they effectively increase capacitance.

However, charge on the plate remains same. Due

to induced charges on the surface of block, it will

be pulled inside. Capacitor will do some work in

pulling. This would reduce energy stored in the

capacitor.

Fig. 7

In Fig. 8 too if dielectric or metallic block is

introduced, they effectively increase capacitance.

However, this time voltage difference across the

plates remains same. Capacitor will still do some

work in pulling, but more charge would flow to

the plates from the battery which also provides

the additional energy that is (i) stored in the

capacitor and (ii) used for doing work.

PROBLEM-BASED LEARNING IN BASIC PHYSICS - V

Fig. 8



14

School Science   Quarterly Journal  June 2014

10. Electric Current: Ohm’s Law

Let resistance of voltmeter be R. 2R/(2 + R) and 3K
divides voltage in the ratio 1 : 2

∴ 2R/(2 + R) = 3/2   ⇒ R = 6 K.

Thus across 3 K,  effective resistance will be 2 K.
Thus voltage measured will be 9 V.

An ideal voltmeter would measure these voltages
to be 7.2 V and 11.8 V.

11. Electric Current: Kirchhoff’s Laws

Fig. 9

Let E
1
 = 6 V  and E

2
 = 4 V

Let current through 2 K, 3 K  and 4 K be  i
2
, i

3
  and

i
4
 , respectively.

According to Kirchhoff’s law for junction (current)
: i

2
 = i

3
  + i

4

According to Kirchhoff’s law for loop (voltage)  :E
1

= 2i
2
 + 3i

3  
and E

2
 = -3i

3
 + 4i

4

Solving which we get : i
2
 = 27/13 mA , i

3
= 8/13 mA

and i
4
 = 19/13 mA

12.  Effective Resistance

Fig. 10

This problem involves dividing current i at entry
point using symmetry and combining at exit point.
Voltage drop between the two points to be
calculated along any chosen path and to be
equated to ix .Where x is the effective resistance to
be calculated.

Ans:  (i) 5R/6      (ii) 3R/4      and   (iii)  7R/12

13. Magnetism

Fig. 11

The magnitude of the magnetic field at a distance
R from a conductor of length L carrying current i

is given by B
i

R

L

R L

=
+

µ

π
0

2
24

4

Fig. 12

Refering to the Fig. 12, magnetic field at a point on
the axis at a distance x from the center of the

/2
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square loop of size a is given by

B
ia

x a x a
=

+ +

µ

π

0

2 2 2 2

4 2

Thus at the centre of the square loop

B
i

a
=

2 2 0µ

π

14. Magnetism

For a polygon of n sides inside a circle of radius a
: in the formula in above problem  L/2→ a sin (π/n)

and R→ a cos (π/n)  which gives 0
µ π
π

tan
2

n i
B =

a n

Thus as n → ∞   :  B
i

a
=
µ

π

0

2
 same as result known

for circular loop.

15. Magnetic Field at any Point on the Axis

of a Circular Current-Carrying Loop

Fig. 13

Using Biot-Savart’s law it can be shown that
component perpendicular to axis  cancels that
due to diametrically opposite element and parallel
component adds up. Thus resultant field works

out to be B
ia

a x
=

+( )
µ0

2 2 3 2

2

16. Magnetic Field at Centre of the

Skeleton Cube

The straight forward application of Biot-Savart’s
law for six straight conductors of finite length

(taking care of directions gives : B
i

a
=

2

3
0µ

π

The problem can also be viewed as entire cube :
the missing sides added would contribute zero
current any way.

17. Electromagnetic Induction

Fig. 14

(a)

(b) (i)  

(ii)  I
steady

=E/R   as  t→∞ ∴  I
steady

 : dissipating across R

PROBLEM-BASED LEARNING IN BASIC PHYSICS - V
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Fig. 15

2

1
cos cos

2 2

mgr
mgr tτ θ ω= =  :  against gravity

2 4 2

1 2

1
cos

4 2

B r
mgr t

R

ω
τ τ τ ω∴ = + = +

JEE. Joint Entrance Examination for Admission to IIT.

INPHO. Indian Physics Olympiad.

MODY, A. K. and H. C. PRADHAN . 2011. Problem Based Learning in Basic Physics–I. School Science 49 (3)
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